4.7 Article

Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis

期刊

GENES & DEVELOPMENT
卷 27, 期 22, 页码 2500-2511

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gad.229385.113

关键词

AAA(+) ATPase; mechanochemical ATPases; multimeric ATPases; bacterial enhancer-binding protein (bEBP); sigma 54-dependent transcription; sigma 54-dependent transcription activators

资金

  1. U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38,, DE-AC02-05CH11231, DEAC02-98CH10886]
  2. National Institutes of Health [RR-08630]

向作者/读者索取更多资源

It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with sigma 54-RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase and the complex of sigma 54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据