4.2 Article

Pre- and postprandial effects on ghrelin signaling in the brain and on the GH/IGF-I axis in the Mozambique tilapia (Oreochromis mossambicus)

期刊

GENERAL AND COMPARATIVE ENDOCRINOLOGY
卷 161, 期 3, 页码 412-418

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygcen.2009.02.008

关键词

Ghrelin; GHS-R; NPY; Tilapia; GH/IGF-I axis

资金

  1. California Sea Grant [NA04OAR170038]
  2. National Science Foundation [IOS-0639771]

向作者/读者索取更多资源

The discovery of ghrelin (GRLN) has broadened our understanding of the regulation of energy homeostasis in vertebrates. In addition to stimulating growth hormone release from the pituitary, GRLN has been implicated as a hunger signal stimulating food intake in mammals and goldfish. Indeed, GRLN levels rise preprandial and fall following a meal. The current study investigated pre- and postprandial changes (3 h before and after a meal) in GRLN signaling in the tilapia (Oreochromis mossambicus). Significant elevations in preprandial brain mRNA levels of the GRLN receptor (GHS-R1a) and GRLN were observed; though not significant brain neuropeptide Y (NPY) mRNA levels did increase preprandially. GHS-R1b, and NPY mRNA levels were reduced significantly 3 h after a meal; whereas GHS-R1a levels were unaltered postprandially. Brain ghrelin mRNA levels exhibited a transient significant increase 1 h postprandially. Tilapia that missed the scheduled feeding exhibited no changes in brain GHS-R1a, GRLN and NPY postprandial mRNA levels; whereas GHS-R1b mRNA levels were significantly reduced I and 3 h postprandially. Brain GHSR preprocessed RNA (heteronuclear mRNA) levels were significantly elevated 3 h preprandially. GHS-R hnRNA levels were significantly elevated 1 h postprandial in fed and fasted tilapia. No preprandial rise in plasma GRLN was observed. Following a meal, plasma GRLN levels were significantly elevated; whereas there was no change in tilapia missing the scheduled feeding. Stomach mRNA levels of GRLN rose preprandially and remained unchanged following a meal. In animals that missed the scheduled feeding stomach GRLN levels dropped significantly 1 h following a meal. There was no change in plasma growth hormone levels in the fed fish, although there was a significant rise in the fasted fish I h after the scheduled feeding. Postprandial levels of plasma IGF-I were elevated in both fed and fasted tilapia. These results suggest that brain derived GRLN is likely driving day-to-day appetite through GHS-R1a and NPY; while systemic GRLN may play a role in postprandial metabolism. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据