4.2 Article Proceedings Paper

New hypotheses on the function of the avian shell gland derived from microarray analysis comparing tissue from juvenile and sexually mature hens

期刊

GENERAL AND COMPARATIVE ENDOCRINOLOGY
卷 163, 期 1-2, 页码 225-232

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygcen.2009.03.006

关键词

Oviduct; Microarray; Prostate; Osteoprotegerin; Anti-microbial; Steroid

资金

  1. Biotechnology and Biological Sciences Research Council [BBS/E/D/05191132] Funding Source: researchfish
  2. BBSRC [BBS/E/D/05191132] Funding Source: UKRI

向作者/读者索取更多资源

Activation of the shell gland region of the avian oviduct is mediated by ovarian steroids. To understand more extensively how shell glands are maintained and function, we have compared gene expression in the shell glands from juvenile and laying hens using a chicken cDNA microarray. Average expression profiles of juvenile and sexually mature shell glands were compared resulting in the identification of 266 differentially regulated genes. Reverse transcription quantitative polymerase chain reaction confirmed expression differences. The differentially expressed genes included several with known involvement in shell gland function, including ion transport and shell matrix proteins. There were also many unpredicted differentially expressed genes, and for some we propose hypotheses for their functions. These include those encoding (a) osteoprotegerin, a decoy death receptor for receptor activator of nuclear factor NFkB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), that in the shell gland, may prevent apoptosis and/or may have an endocrine effect by preventing RANKL's action on bone osteoclasts that mobilize stored calcium; (b) prostatic acid phosphatase (ACPP) and prostate stem cell antigen (PSCA) that could play a role in sperm physiology within the shell gland; (c) urea transporter (SLC14A2) that could provide a novel anti-microbial defence; (d) bactericidal/permeability-increasing protein-like 2 (BPIL2), and other potential anti-microbials that have not previously been documented in the chicken. These new hypotheses, if borne out experimentally, will lead to a greater understanding of shell gland function including the processes involved in eggshell formation and anti-microbial activity. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据