4.6 Article

A proteomics of gills approach to understanding salinity adaptation of Scylla paramamosain

期刊

GENE
卷 677, 期 -, 页码 119-131

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2018.07.059

关键词

Scylla paramamosain; Gill; iTRAQ protein profile; Sudden decrease in salinity; Adaptive mechanism

资金

  1. Major Sci & Tech Special Project of Zhejiang Province [2016C02055-8]
  2. China Agriculture Research System [CARS-48]
  3. K. C. Wong Magna Fund in Ningbo University
  4. Ministry of Agriculture of China

向作者/读者索取更多资源

Scylla paramamosain (Crustacea) is a commercially important euryhaline species distributed along the coast of southern China and other Indo-Pacific countries. However, a sudden variation in salinity will cause injury or even death to S. paramamosain. In this paper, we simulated a sudden decrease in salinity due to heavy precipitation in crab ponds. Comparison of gill microstructures of individuals in the control group and decreased salinity group showed gills became shorter and thicker, while the top of the filaments became swollen and then returned to normal after 120 h. A total of 3962 proteins were identified by proteomic sequencing of gills after 120 h under conditions of decreased salinity. 845 proteins were differentially expressed: 371 up-regulated and 474 down-regulated. Of the enriched KEGG pathways, 20 were up-regulated and 14 were down-regulation (P < 0.05). Among the significantly enriched up-regulated pathways, six were associated with amino acid metabolism and three were associated with Na+-K+-ATPase enzymatic activities. Pathways associated with redox metabolism and energy metabolism were identified. These results showed that in response to a decrease in salinity, S. paramamosain could adapt to the environment after 120 h. Molecular mechanism of this adaptation involved amino acid metabolism and Na+-K+-ATPase ion transport. Meanwhile, energy metabolism and redox metabolism were critical to the adaptation to a sudden decrease in salinity. This study, for the first time at the protein level, revealed the molecular mechanisms underlying salinity adaption of S. paramamosain and provides theoretical guidelines for the cultivation of S. paramamosain and other marine crustaceans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据