4.6 Review

The influence of reactive oxygen species on cell cycle progression in mammalian cells

期刊

GENE
卷 511, 期 1, 页码 1-6

出版社

ELSEVIER
DOI: 10.1016/j.gene.2012.08.038

关键词

ROS; Cell cycle; Transactivation; Ubiquitination; Phosphorylation

向作者/读者索取更多资源

Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据