4.6 Article

Effects of cis and trans regulatory variations on the expression divergence of heat shock response genes between yeast strains

期刊

GENE
卷 506, 期 1, 页码 93-97

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2012.06.034

关键词

Yeast; Transcription regulation; Stress; Heat-shock; cis regulatory variation; trans regulatory variation

资金

  1. NSC [NSC 98-2621-B-006-002-MY3]

向作者/读者索取更多资源

Phenotypic variation among individuals in a population can be due to DNA sequence variation in protein coding regions or in regulatory elements. Recently, many studies have indicated that mutations in regulatory elements may be the major cause of phenotypic evolution. However, the mechanisms for evolutionary changes in gene expression are still not well understood. Here, we studied the relative roles of cis and trans regulatory changes in Saccharomyces cerevisiae cells to cope with heat stress. It has been found that the expression level of similar to 300 genes was induced at least two fold and that of similar to 500 genes was repressed at least two fold in response to heat shock. From the former set of genes, we randomly selected 65 genes that showed polymorphism(s) between the BY and RM strains for pyrosequencing analysis to explore the relative contributions of cis and trans regulatory variations to the expression divergence between BY and RM. Our data indicated that the expression divergence between BY and RM was mainly due to trans regulatory variations under either the normal condition or the heat stress condition. However, the relative contribution of trans regulatory variation was decreased from 76.9% to 61.5% after the heat shock stress. These results indicated that the cis regulatory variation may play an important role in the adaption to heat stress. In our data, 43.1% (28 genes) of the 65 genes showed the same trend of cis or trans variation effect after the heat shock stress, 35.4% (23 genes) showed an increased cis variation effect and 21.5% (14 genes) showed an increased trans variation effect after the heat shock stress. Thus, our data give insights into the relative roles of cis and trans variations in response to heat shock in yeast. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据