4.8 Article

Detection of Dysplasia in Barrett's Esophagus With In Vivo Depth-Resolved Nuclear Morphology Measurements

期刊

GASTROENTEROLOGY
卷 140, 期 1, 页码 42-50

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2010.09.008

关键词

Barrett's Esophagus; Optical Techniques; Light Scattering

资金

  1. National Institutes of Health (National Cancer Institute) [R33-CA109907, DK 034987, DK 056350]
  2. National Science Foundation [BES 03-48204]
  3. Coulter Foundation
  4. Oncoscope, Inc, through a National Institutes of Health
  5. Oncoscope, Inc
  6. NATIONAL CANCER INSTITUTE [R33CA109907] Funding Source: NIH RePORTER
  7. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [P30DK034987, P30DK056350] Funding Source: NIH RePORTER

向作者/读者索取更多资源

BACKGROUND & AIMS: Patients with Barrett's esophagus (BE) show increased risk of developing esophageal adenocarcinoma and are routinely examined using upper endoscopy with biopsy to detect neoplastic changes. Angle-resolved low coherence interferometry (a/LCI) uses in vivo depth-resolved nuclear morphology measurements to detect dysplasia. We assessed the clinical utility of a/LCI in the endoscopic surveillance of patients with BE. METHODS: Consecutive patients undergoing routine surveillance upper endoscopy for BE were recruited at 2 endoscopy centers. A novel, endoscope-compatible a/LCI system measured the mean diameter and refractive index of cell nuclei in esophageal epithelium at 172 biopsy sites in 46 patients. At each site, an a/LCI measurement was correlated with a concurrent endoscopic biopsy specimen. Each biopsy specimen was assessed histologically and classified as normal, nondysplastic BE, indeterminate for dysplasia, low-grade dysplasia (LGD), or high-grade dysplasia (HGD). The a/LCI data from multiple depths were analyzed to evaluate its ability to differentiate dysplastic from nondysplastic tissue. RESULTS: Pathology characterized 5 of the scanned sites as HGD, 8 as LGD, 75 as nondysplastic BE, 70 as normal tissue types, and 14 as indeterminate for dysplasia. The a/LCI nuclear size measurements separated dysplastic from nondysplastic tissue at a statistically significant (P<.001) level for the tissue segment 200 to 300 mu m beneath the surface with an accuracy of 86% (147/172). A receiver operator characteristic analysis indicated an area under the curve of 0.91, and an optimized decision point gave 100% (13/13) sensitivity and 84% (134/159) specificity. CONCLUSIONS: These preliminary data suggest a/LCI is accurate in detecting dysplasia in vivo in patients with BE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据