4.8 Article

Kruppel-Like Factor 5 Is Important for Maintenance of Crypt Architecture and Barrier Function in Mouse Intestine

期刊

GASTROENTEROLOGY
卷 141, 期 4, 页码 1302-U745

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2011.06.086

关键词

Intestinal Homeostasis; Gastrointestinal Development; Genetics; GI Tract

资金

  1. National Institutes of Health [DK052230, DK055679, DK059888, DK0644399, DK076742, DK089131, CA084197, CA130308]

向作者/读者索取更多资源

BACKGROUND & AIMS: Kruppel-like factor 5 (KLF5) is transcription factor that is expressed by dividing epithelial cells of the intestinal epithelium. KLF5 promotes proliferation in vitro and in vivo and is induced by mitogens and various stress stimuli. To study the role of KLF5 in intestinal epithelial homeostasis, we examined the phenotype of mice with conditional deletion of Klf5 in the gut. METHODS: Mice were generated with intestinal-specific deletion of Klf5 (Vil-Cre; Klf5fl/fl). Morphologic changes in the small intestine and colon were examined by immunohistochemistry, immunoblotting, and real-time polymerase chain reaction. RESULTS: Klf5 mutant mice were born at a normal Mendelian ratio but had high mortality compared with controls. Complete deletion of Klf5 from the intestinal mucosa resulted in neonatal lethality that corresponded with an absence of epithelial proliferation. Variegated intestinal-specific deletion of Klf5 in adult mice resulted in morphologic changes that included a regenerative phenotype, impaired barrier function, and inflammation. Adult mutant mice exhibited defects in epithelial differentiation and migration. These changes were associated with reduced expression of Caudal type homeobox (Cdx) 1, Cdx2, and Eph and ephrin signaling proteins. Concomitantly, Wnt signaling to beta-catenin was reduced. Proliferation in regenerative crypts was associated with increased expression of the progenitor cell marker Sox9. CONCLUSIONS: Deletion of Klf5 in the gut epithelium of mice demonstrated that KLF5 maintains epithelial proliferation, differentiation, and cell positioning along the crypt radial axis. Morphologic changes that occur with deletion of Klf5 are associated with disruption of canonical Wnt signaling and increased expression of Sox9.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据