4.8 Article

Nitric Oxide-Sensitive Guanylyl Cyclase Is Dispensable for Nitrergic Signaling and Gut Motility in Mouse Intestinal Smooth Muscle

期刊

GASTROENTEROLOGY
卷 140, 期 5, 页码 1608-1617

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2011.01.038

关键词

Knockout Mice; GI Transit; Intestine; Digestion

资金

  1. Deutsche Forschungsgemeinschaft [FR 1725]
  2. Forschungsforderung der Medizinischen Fakultat der Ruhr-Universitat Bochum [F617-2008]
  3. Medizinische Fakultat der Universitat zu Lubeck [A31-2007, PI-E11B-2009]

向作者/读者索取更多资源

BACKGROUND & AIMS: The nitric oxide-guanosine 3',5'-cyclic monophosphate (cGMP) signaling pathway has an important role in the control of smooth muscle tone. NO is produced by NO synthases and acts as a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. The main target, NO-sensitive guanylyl cyclase (NO-GC), is stimulated by NO to produce the intracellular messenger cGMP. We investigated the role of NO-GC in nitrergic relaxation and GI motility. METHODS: We tested relaxation of GI smooth muscle in mice that do not express NO-GC or mice with disruption of NO-GC specifically in smooth muscle cells. Different segments of the GI tract (fundus, lower esophageal sphincter, pyloric sphincter, and duodenum) were used in isometric force studies. NO donors and electrical field stimulation were used to assess nitrergic signaling. Whole-gut transit time was measured as an indicator of GI motility. RESULTS: Mice that lack NO-GC do not have NO-induced relaxation of GI smooth muscle. Gut transit time was increased, resulting in GI dysfunction. Surprisingly, in mice that lack NO-GC specifically in smooth muscle, NO-induced relaxation was reduced only slightly, and whole-gut transit time was unchanged compared with wild-type mice. CONCLUSIONS: Lack of NO-GC in smooth muscle cells does not impair NO-induced relaxation of GI tissues or GI motility. The NO receptor guanylyl cyclase in GI smooth muscle is therefore dispensable for nitrergic signaling in mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据