4.8 Article

Purinergic Neuron-to-Glia Signaling in the Enteric Nervous System

期刊

GASTROENTEROLOGY
卷 136, 期 4, 页码 1349-1358

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2008.12.058

关键词

-

资金

  1. Canadian Institutes of Health Research
  2. Canadian Foundation for Innovation
  3. Alberta Science and Research Authority

向作者/读者索取更多资源

Background & Aims: Enteric glia are intimately associated with neurons in the enteric nervous system (ENS) and display morphologic and molecular similarities to central nervous system (CNS) astrocytes. Enteric glia express neurotransmitter receptors, suggesting that, like astrocytes, they are active participants in neuronal communication. In the ENS, the purine adenosine triphosphate (ATP) is co-released with the neurotransmitters noradrenaline and acetylcholine. Enteric glia express purinergic receptors and respond to ATP in vitro, suggesting that enteric glia participate in functional gastrointestinal responses to nerve signaling. We investigated whether enteric glia are activated by ATP released from enteric neurons. Methods: Synaptic activity was elicited in enteric neurons by electrically stimulating interganglionic connectives in the myenteric plexus of the guinea pig colon. Activity in enteric glial cells was detected by imaging intracellular calcium in situ. Results: Neuronal stimulation elicited increases in intracellular calcium in enteric glial cells that were blocked by tetrodotoxin, the nonselective purinergic receptor antagonist pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (PPADS), and the phospholipase C inhibitor U73122. Furthermore, enteric glia responded robustly to exogenously applied ATP in situ, and the ATP response was blocked by PPADS and U73122. Data from pharmacologic profiling and immunohistochemical analyses support the hypothesis that P2Y4 is the major functional receptor underlying the ATP response in enteric glia. Conclusions: Our results provide direct evidence for functional purinergic neuron-glia communication in the enteric nervous system, raising the possibility that ATP released with neurotransmitters during enteric synaptic transmission functions to signal to enteric glia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据