4.4 Article

RTK inhibition: looking for the right pathways toward a miracle

期刊

FUTURE ONCOLOGY
卷 8, 期 11, 页码 1397-1400

出版社

FUTURE MEDICINE LTD
DOI: 10.2217/FON.12.130

关键词

bevacizumab; drug resistance; glioblastoma; invasion; MET; vascular endothelial growth factor

类别

资金

  1. Ben & Catherine Ivy Foundation
  2. NIH [U01CA168397]
  3. Van Andel Research Institute

向作者/读者索取更多资源

Evaluation of: Lu KV, Chang JP, Parachoniak CA et at VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22(1), 21-35 (2012). In glioblastoma, a well-characterized angiogenic target is VEGF. Bevacizumab is a humanized monoclonal antibody that binds to VEGF and was developed to inhibit the VEGF signaling pathway. Based on promising results from clinical trials that bevacizumab can prolong progression-free survival in recurrent glioblastoma patients, the US FDA granted this drug accelerated approval for the treatment of recurrent or progressive glioblastoma; however, there has been no evidence that the overall median survival of patients is prolonged. More recently, Phase II clinical trials tested bevacizumab in combination with traditional radiation and/or temozolamide in newly diagnosed glioblastoma patients and again showed prolonged progression-free survival in these patients, but overall survival was not significantly changed. More importantly, there was evidence that tumors resistant to or recurring after bevacizumab treatment often showed a more aggressive phenotype. Due to the lack of effective post-bevacizumab therapies, it has been suggested that treatment with bevacizumab not be used until patients have developed late-stage recurrent tumors. Under these circumstances, there is a timely need to uncover the mechanisms of resistance to bevacizumab. In this article, Lu et al. reported a novel mechanism whereby VEGF negatively regulates tumor cell invasion by blocking MET phosphorylation in the MET/VEGFR2 complex. They showed that inhibiting the VEGF pathway results in MET activation in VEGF-knockout mouse models and in patients after bevacuzimub treatment, and that MET knockdown blocked the invasiveness of VEGF knockout tumors, suggesting that blocking the MET pathway can prevent post-bevacizumab treatment tumor recurrence, providing a strong rationale for using a combination of MET and VEGF receptor inhibitors to treat glioblastoma patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据