4.2 Article

Characterising the near-wake of a cross-flow turbine

期刊

JOURNAL OF TURBULENCE
卷 16, 期 4, 页码 392-410

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14685248.2014.1001852

关键词

renewable energy; cross-flow turbine; turbine farm; turbine array; wind energy; marine hydrokinetic

资金

  1. National Science Foundation CAREER award (PI Wosnik) [NSF-CBET 1150797]
  2. Leslie S. Hubbard Marine Programme Endowment
  3. US Department of Energy
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [1150797] Funding Source: National Science Foundation

向作者/读者索取更多资源

The performance and detailed near-wake characteristics of a vertical axis, cross-flow turbine (CFT) of aspect ratio 1 were measured in a large cross-section towing tank. The near-wake at one turbine diameter downstream was examined using acoustic Doppler velocimetry, where essential features regarding momentum, energy, and vorticity are highlighted. Dominant scales and their relative importance were investigated and compared at various locations in the measurement plane. Estimates for the terms in the mean streamwise momentum and mean kinetic energy equation were computed, showing that the unique mean vertical velocity field of this wake, characterised by counter-rotating swirling motion, contributes significantly more to recovery than the turbulent transport. This result sheds light on previous CFT studies showing relatively fast downstream wake recovery compared to axial-flow turbines. Finally, predictions from a Reynolds-averaged Navier-Stokes simulation with the commonly used actuator disk model were compared with the experimental results, evaluating its use as an engineering tool for studying flow in CFT arrays. Unsurprisingly, the model was not able to predict the near-wake structure accurately. This comparison highlights the need for improved parameterised engineering models to accurately predict the near-wake physics of CFTs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据