4.5 Article Proceedings Paper

Development of a powder metallurgy process for tungsten components

期刊

FUSION ENGINEERING AND DESIGN
卷 83, 期 10-12, 页码 1517-1520

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.fusengdes.2008.06.022

关键词

Powder injection moulding; Tungsten; Tungsten alloys; PIM; MIM; CIM; LIGA; Micro-systems technology

向作者/读者索取更多资源

At present, a He-cooled divertor design for future fusion power plants is being developed at Forschungszentrum Karlsruhe. The divertor has to withstand high heat loads as well as sputtering, so that tungsten is considered to be the most promising material. Due to its high hardness, processing by standard shaping technologies, such as milling, is either difficult or even impossible. Consequently, powder injection moulding (PIM) as a method for cost-effective net shape fabrication has been adapted to tungsten. The key steps in injection moulding, such as feedstock formulation, the injection moulding process itself as well as debinding and sintering were studied. A tungsten feedstock with an optimised solid load of 55 vol.% was developed and successfully tested in moulding experiments applying complex shaped cavities. Thermal consolidation of injection-moulded components leads to a sintered density of approximately 96% and a grain size of approximately 18 mu m. For final densification and grain size reduction, hot isostatic pressing (HIP) was investigated. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据