4.4 Article

Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine

期刊

FUNGAL GENETICS AND BIOLOGY
卷 49, 期 2, 页码 114-122

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.fgb.2011.12.004

关键词

Acremonium chrysogenum; glrA; Methionine; Growth; Antioxidative activity

资金

  1. Ministry of Science and Technology of China [2009CB118905, 2010ZX09401-403]
  2. Chinese Academy of Sciences [KSCX2-EW-J-6]

向作者/读者索取更多资源

Glutathione is a ubiquitous thiol in eukaryotic cells, and its high intracellular ratio of reduced form (GSH) to oxidized form (GSSG) is largely maintained by glutathione reductase (GR) using NADPH as electron donor. glrA, a glutathione reductase encoding gene, was found and cloned from Acremonium chrysogenum by searching its genomic sequence based on similarity. Its deduced protein exhibits high similarity to GRs of other eukaryotic organisms. Disruption of glrA resulted in lack of GR activity and accumulation of a high level of GSSG in A. chrysogenum. Overexpression of glrA dramatically enhanced GR activity and the ratio of GSH/GSSG in this fungus. The spore germination and hyphal growth of glrA disruption mutant was strongly reduced in chemical defined medium. Meanwhile, the mutant was more sensitive to hydrogen peroxide than the wild-type strain. We found that the glrA mutant recovered normal germination and growth by adding exogenous methionine (Met). Exogenous Met also enhanced the antioxidative ability of both the mutant and wild-type strain. GSH determination indicated that the total GSH and ratio of GSH/GSSG in the mutant or wild-type strain were significantly increased when addition of Met into the medium. The glrA mutant grew poorly and could not produce detectable cephalosporin in the fermentation medium without Met. However, its growth and cephalosporin production was restored with addition of exogenous Met. These results indicate that glrA is required for the normal growth and protection against oxidative damage in A. chrysogenum, and its absence can be complemented by exogenous Met. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据