4.4 Article

Characterization of a novel 2,4,6-trichlorophenol-inducible gene encoding chlorophenol O-methyltransferase from Trichoderma longibrachiatum responsible for the formation of chloroanisoles and detoxification of chlorophenols

期刊

FUNGAL GENETICS AND BIOLOGY
卷 47, 期 5, 页码 458-467

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.fgb.2010.02.002

关键词

Cork; Chlorophenols; Pesticides; 2,4,6-Trichlorophenol; 2,4,6-Trichloroanisole; O-Methylation; O-Methyltransferase; Trichoderma

资金

  1. CORKACCAO
  2. European Community
  3. Spanish Ministry of Education and Science [CICYT AGL2003-00865]

向作者/读者索取更多资源

De novo sequencing of eight internal peptides of purified chlorophenol O-methyltransferase, or CMT1 (before named as CPOMT), from Trichoderma longibrachiatum was performed by MALDI-TOF/TOF and ESI-IT. A novel gene (cmt1) encoding CMT1 was cloned by using a PCR approach based on the amino acid sequence of two internal peptides. The gene (1637 bp) encoded a protein of 468 amino acids with a deduced molecular mass of 52.4 kDa, and a theoretical isoelectric point of 5.93. This gene contains four introns, whose location was confirmed by comparison of cDNA and chromosomal sequences. The expression of cmt1 gene was induced at transcriptional level by exposure of fungal mycelia to 2,4,6-trichlorophenol (2,4,6-TCP). Putative homologous genes were detected in many different fungal strains, including other Trichoderma species. Partial silencing of cmt1 gene resulted in a 48.9% (+/- 5.2) decrease of CMT1 activity levels in a T. longibrachiatum At37 transformant strain by comparison with the wild type, whereas a decrease of up to 53.0% was observed in the levels of 2,4,6-TCA produced in liquid cultures. Efficient expression of cmt1 gene in Escherichia coli unequivocally confirmed that it encodes a CMT1 enzyme. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据