4.5 Review

The integration of activity in saline environments: problems and perspectives

期刊

FUNCTIONAL PLANT BIOLOGY
卷 40, 期 8-9, 页码 759-774

出版社

CSIRO PUBLISHING
DOI: 10.1071/FP12285

关键词

cation transport; chaperones; compatible osmotica; continuum; cytosolic integrity; glycophyte; halophyte; hydrophilins; photosynthesis; salt tolerance; signalling; sodium toxicity; water relations

向作者/读者索取更多资源

The successful integration of activity in saline environments requires flexibility of responses at all levels, from genes to life cycles. Because plants are complex systems, there is no 'best' or 'optimal' solution and with respect to salt, glycophytes and halophytes are only the ends of a continuum of responses and possibilities. In this review, I briefly examine seven major aspects of plant function and their responses to salinity including transporters, secondary stresses, carbon acquisition and allocation, water and transpiration, growth and development, reproduction, and cytosolic function and 'integrity'. I conclude that new approaches are needed to move towards understanding either organismal integration or 'salt tolerance', especially cessation of protocols dependent on sudden, often lethal, shock treatments and the embracing of systems level resources. Some of the tools needed to understand the integration of activity and even 'salt stress' are already in hand, such as those for whole-transcriptome analysis. Others, ranging from discovery studies of the nature of the cytosol to expanded tool kits for proteomic, metabolomic and epigenomic studies, still need to be further developed. After resurrecting the distinction between applied stress and the resultant strain and noting that with respect to salinity, the strain is manifest in changes at all -omic levels, I conclude that it should be possible to model and quantify stress responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据