4.5 Article

Physiological and morphological factors influencing leaf, rhizome and stolon tensile strength in C4 turfgrass species

期刊

FUNCTIONAL PLANT BIOLOGY
卷 38, 期 11, 页码 919-926

出版社

CSIRO PUBLISHING
DOI: 10.1071/FP11070

关键词

abiotic stress; Bermudagrass; football; fructose; glucose; golf; lignin; manilagrass; silica; seashore paspalum; sports turf; starch; sucrose; traction; zoysiagrass

向作者/读者索取更多资源

The intrinsic resistance of plant tissue to several biomechanical stresses, including tensile stress, is a decisive factor in determining the wear resistance of a turfgrass species. Lignin, dry matter, starch, sugars and silica are some of the tissue constituents that have been associated with leaf and stem mechanical resistance, whereas little information is available concerning stolons and rhizomes. These organs not only enable C-4 turfgrass species lateral growth, soil colonisation and injury recovery, but are also key constituents of mature swards. This study consisted in an extensive investigation on the effective leaf, stolon and rhizome tensile strength of Cynodon dactylon (L.) Pers. var. dactylon x C. transvaalensis Burt-Davy cv. Tifway 419, Zoysia matrella (L.) Merr. cv. Zeon and Paspalum vaginatum Swartz. cv. Salam, as measured with a Federation Internationale de Football Association (FIFA)-approved dynamometer and correlating the results with laboratory investigations on key tissue constituents. Tensile strength per unit area was influenced by both tissue constituents and tissue dimension. In rhizomes and stolons, tissue breakage usually occurred in the area at the intercalary meristem at the apical zone in the immediate proximity of a node. Older tissues had higher tensile strength owing to their higher levels of lignification. Lignin was the principal constituent determining tissue tensile strength and as such it could be used as a turfgrass wear resistance predictor in the cultivar breeding stages. Stolon total soluble sugars were generally inversely proportional to lignin content and, therefore, can also be considered clear markers of tissue mechanical strength. Silica was found to have no influence on the mechanical properties tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据