4.5 Article

Root phenomics of crops: opportunities and challenges

期刊

FUNCTIONAL PLANT BIOLOGY
卷 36, 期 10-11, 页码 922-929

出版社

CSIRO PUBLISHING
DOI: 10.1071/FP09150

关键词

barley; gel chambers; genotypic variation; root architecture; root length; root QTLs; wheat; X-ray tomography

资金

  1. Rural and Environment Research and Analysis Directorate of the Scottish Government
  2. SCRI
  3. University of Reading
  4. University of Abertay
  5. Engineering and Physical Sciences Research Council [EP/C50920X/1] Funding Source: researchfish

向作者/读者索取更多资源

Reliable techniques for screening large numbers of plants for root traits are still being developed, but include aeroponic, hydroponic and agar plate systems. Coupled with digital cameras and image analysis software, these systems permit the rapid measurement of root numbers, length and diameter in moderate ( typically <1000) numbers of plants. Usually such systems are employed with relatively small seedlings, and information is recorded in 2D. Recent developments in X-ray microtomography have facilitated 3D non-invasive measurement of small root systems grown in solid media, allowing angular distributions to be obtained in addition to numbers and length. However, because of the time taken to scan samples, only a small number can be screened (typically<10 per day, not including analysis time of the large spatial datasets generated) and, depending on sample size, limited resolution may mean that fine roots remain unresolved. Although agar plates allow differences between lines and genotypes to be discerned in young seedlings, the rank order may not be the same when the same materials are grown in solid media. For example, root length of dwarfing wheat ( Triticum aestivum L.) lines grown on agar plates was increased by similar to 40% relative to wild-type and semi-dwarfing lines, but in a sandy loam soil under well watered conditions it was decreased by 24-33%. Such differences in ranking suggest that significant soil environment-genotype interactions are occurring. Developments in instruments and software mean that a combination of high-throughput simple screens and more in-depth examination of root-soil interactions is becoming viable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据