4.7 Article

Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes

期刊

JOURNAL OF TRANSLATIONAL MEDICINE
卷 13, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12967-015-0412-5

关键词

Caulerpa lentillifera; Glucose metabolism; PI3K/AKT; Myocytes; db/db Mice; Anti-diabetic effect

资金

  1. Basic Science Research Program, through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [2012R1A1A2009172]
  2. National Research Foundation of Korea [2012R1A1A2009172] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Background: Glucose homeostasis is distorted by defects of the PI3K/AKT and AMPK pathways in insulin-sensitive tissues, allowing the accumulation of glucose in the blood. The purpose of this study was to assess the effects and mechanisms by which ethanol extract of Caulerpa lentillifera (CLE) regulates glucose metabolism in C57BL/KsJ-db/db (db/db) mice. Methods: Mice were administered CLE (250 or 500 mg/kg BW) or rosiglitazone (RSG, 10 mg/kg BW) for 6 weeks. Then, oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (IPITT) were performed, and blood glucose was measured in db/db mice. Levels of insulin and insulin resistance factors in plasma, glycogen content in the liver, and IRS, PI3K, AKT, and GLUT4 expressions in skeletal muscles were measured in db/db mice. Glucose uptake and insulin signaling molecules were measured in L6 myocytes, using fluorometry and Western blotting. Results: CLE significantly decreased fasting blood glucose, glucose level in OGTT and IPITT, plasma insulin, homeostatic model assessment-insulin resistant (HOMA-IR), TNF-alpha, IL-6, FFA, TG and TC levels, and hepatic glycogen content in db/db mice. CLE significantly increased the activation of IRS, AKT, PI3K, and GLUT4, which are the key effector molecules of the PI3K/AKT pathway in L6 myocytes and the skeletal muscles of db/db mice. The enhanced glucose uptake by CLE was abolished by treatment with a PI3K inhibitor (LY294002), but not by an AMPK inhibitor (compound C) in L6 myocytes. CLE regulated glucose uptake and homeostasis via the PI3K/AKT pathway in myocytes and db/db mice, respectively. Conclusion: Our results suggest that CLE could be a potential candidate for the prevention of diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据