4.7 Article

Adaptive maternal and paternal effects: gamete plasticity in response to parental stress

期刊

FUNCTIONAL ECOLOGY
卷 28, 期 3, 页码 724-733

出版社

WILEY-BLACKWELL
DOI: 10.1111/1365-2435.12195

关键词

transgenerational phenotypic plasticity; non-genetic parental effects; epigenetics

类别

资金

  1. Australian Research Council
  2. Australian Post-Graduate Award

向作者/读者索取更多资源

Transgenerational phenotypic plasticity is increasingly recognized as an important buffer of environmental change - many studies show that mothers alter the phenotype of their offspring so as to maximize their performance in their local environment. Fewer studies have examined the capacity of parents to alter the phenotype of their gametes to cope with environmental change. In organisms that shed their gametes externally, gametes are extremely vulnerable to local stresses and transgenerational plasticity in the phenotypes of gametes seems likely in this group. In a marine tubeworm, Hydroides diramphus, we manipulated the salinity environment that mothers and fathers experienced before reproduction and then examined the phenotype of their gametes, as well as the performance of those gametes and the resultant larvae in different salinities. We found strong evidence for gamete plasticity - both mothers and fathers adaptively adjust the phenotype of their gametes to maximize the performance of those gametes in the salinity regime experienced by their parents. Parents were quite flexible in the phenotype of gametes that they produced: they could switch the salinity tolerance of their gametes back and forth depending on their most recent experience. Gamete plasticity was not without risks, however. We observed strong trade-offs in performance when gametes experienced an environment that did not match that of their parents. These effects of the parental environment persist for the duration of the larval phase such that larvae may not be able to disperse to environments that do not match their parents. Gamete plasticity may therefore represent an important source of phenotype-environment mismatches. Gamete plasticity may represent an important mechanism for coping with environmental change and an important source of maternal and paternal effects in species with external fertilization. Studies that seek to predict the impacts of stresses that persist across generations (e.g. ocean acidification) should include parental exposures to the stress of interest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据