4.7 Article

Geographic variation in vulnerability to climate warming in a tropical Caribbean lizard

期刊

FUNCTIONAL ECOLOGY
卷 26, 期 4, 页码 783-793

出版社

WILEY
DOI: 10.1111/j.1365-2435.2012.01987.x

关键词

Anolis; behavioural thermoregulation; global change; Puerto Rico; thermal ecology; whole-organism performance

类别

资金

  1. National Science Foundation [DEB-1110570]
  2. Duke Center for Latin American and Caribbean Studies
  3. Duke chapter of Sigma Xi
  4. North Carolina Academy of Sciences
  5. Direct For Biological Sciences
  6. Division Of Environmental Biology [1110570] Funding Source: National Science Foundation

向作者/读者索取更多资源

1. Rising global temperatures are predicted to impact organisms in diverse ways. For ectotherms, recent broad-scale analyses have predicted global patterns of vulnerability to warming, with tropical species at higher risk of detrimental effects than temperate species. However, vulnerability results from complex interactions between environment, physiology and behaviour. For species that inhabit a diversity of habitat types, these interactions may change across their range. 2. We measured operative thermal environments (Te) and body temperatures (Tb) of the tropical Caribbean lizard Anolis cristatellus at nine sites representing two habitat types: mesic and xeric forest. The thermal sensitivity of whole-organism physiological performance (i.e. sprint speed) of one mesic and one xeric population was also measured. Thermal and performance data were integrated to determine how habitat thermal variation, behavioural thermoregulation and thermal physiology influence current physiological performance capacity in the field. We then evaluate if habitat suitability and physiological capacity would change assuming climate warming of 3 degrees C over the next century. 3. The mean Te of the xeric habitat was 4.5 degrees C warmer than that of the mesic habitat. However, behavioural thermoregulation by xeric lizards led to lesser differences in Tb (3.5 degrees C) between habitat types. The thermal sensitivity of sprint performance was similar for mesic and xeric lizards, and lizards from both habitats maintain sprint capacities near 100%. Climate warming is predicted to influence mesic and xeric lizards differently. Xeric lizards currently live in a thermal environment near their upper temperature threshold, while mesic lizards do not. As a result, the number of suitable perch sites is predicted to decrease dramatically in the xeric but not the mesic habitat. In addition, the physiological capacity of mesic lizards is predicted to increase by approximately 4%, whereas a decrease of approximately 30% is predicted for xeric lizards. 4. We characterized variation in the current biophysical and ecophysiological conditions experienced by A.cristatellus by integrating fine-scale measurements of thermal microhabitats with data on body temperatures and physiological performance capacities. These data allowed us to explicitly demonstrate how variation in these parameters can influence population susceptibility to climate warming across a species range and highlight the utility of a mechanistic approach in studies of global climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据