4.7 Article

Monitoring inflammation and airway remodeling by fluorescence molecular tomography in a chronic asthma model

期刊

JOURNAL OF TRANSLATIONAL MEDICINE
卷 13, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12967-015-0696-5

关键词

Animal chronic asthma model; Fluorescence molecular tomography; Inflammatory cell infiltration; Airways remodeling

资金

  1. Institutional funds from Chiesi Farmaceutici
  2. Universita degli Studi di Milano

向作者/读者索取更多资源

Background: Asthma is a multifactorial disease for which a variety of mouse models have been developed. A major drawback of these models is represented by the transient nature of the airway pathology peaking 24-72 h after challenge and resolving in 1-2 weeks. We characterized the temporal evolution of pulmonary inflammation and tissue remodeling in a recently described mouse model of chronic asthma (8 week treatment with 3 allergens: Dust mite, Ragweed, and Aspergillus; DRA). Methods: We studied the DRA model taking advantage of fluorescence molecular tomography (FMT) imaging using near-infrared probes to non-invasively evaluate lung inflammation and airway remodeling. At 4, 6, 8 or 11 weeks, cathepsin-and metalloproteinase-dependent fluorescence was evaluated in vivo. A subgroup of animals, after 4 weeks of DRA, was treated with Budesonide (100 mu g/kg intranasally) daily for 4 weeks. Results: Cathepsin-dependent fluorescence in DRA-sensitized mice resulted significantly increased at 6 and 8 weeks, and was markedly inhibited by budesonide. This fluorescent signal well correlated with ex vivo analysis such as bronchoalveolar lavage eosinophils and pulmonary inflammatory cell infiltration. Metalloproteinase-dependent fluorescence was significantly increased at 8 and 11 weeks, nicely correlated with collagen deposition, as evaluated histologically by Masson's Trichrome staining, and airway epithelium hypertrophy, and was only partly inhibited by budesonide. Conclusions: FMT proved suitable for longitudinal studies to evaluate asthma progression, showing that cathepsin activity could be used to monitor inflammatory cell infiltration while metalloproteinase activity parallels airway remodeling, allowing the determination of steroid treatment efficacy in a chronic asthma model in mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据