4.7 Article

Plant-soil associations in a lower montane tropical forest: physiological acclimation and herbivore-mediated responses to nitrogen addition

期刊

FUNCTIONAL ECOLOGY
卷 24, 期 6, 页码 1171-1180

出版社

WILEY
DOI: 10.1111/j.1365-2435.2010.01731.x

关键词

Arecaceae; fertilization; growth trade-offs; habitat association; Panama; seedling transplant experiment

类别

资金

  1. National Science Foundation
  2. Smithsonian Institute
  3. University of Illinois - Champaign/Urbana
  4. Robert Bosch Foundation (Germany)

向作者/读者索取更多资源

P>1. Soil nutrients influence plant productivity and community composition in tropical forests. In lower montane tropical forests in western Panama, the distribution of understory palm species over a scale of 1-20 km correlates with differences in soil nitrogen (N). We hypothesized that soil N determines seedling performance in the forest understory, and, may therefore influence species distributions along the soil N gradient. 2. We explored the potential for N availability to generate species-habitat associations through species-specific differences in biomass allocation, photosynthetic capacity, N use-efficiency, and susceptibility to herbivory. Seedlings of nine palm species from two sub-families and four habitat types were transplanted into N-addition and control plots at a low N site. Growth, mortality, biomass allocation, photosynthesis, foliar N content and herbivory were measured over 21 months. 3. Foliar N increased for all species (15-68%) following N addition. Most species showed strong (20-200%) increases in photosynthetic rates with N addition except two species with marginal decreases in photosynthetic rates (5-15%). However, shifts in physiological traits did not increase relative growth rate or change in biomass allocation for any species or N treatment combination. Rather, increased leaf quality contributed to greater levels of herbivory in species associated with soils of intermediate and high inorganic N availability. 4. Thus, potential increases in overall growth with N addition were masked by herbivory, resulting in no apparent growth response with increased N. We suggest that for understory palms, and potentially other montane forest plants, distribution patterns are driven by a combination of physiological and herbivore-mediated responses to soil nutrient availability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据