4.7 Article

Pyrolysis of black liquor for phenols and impact of its inherent alkali

期刊

FUEL PROCESSING TECHNOLOGY
卷 127, 期 -, 页码 149-156

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fuproc.2014.06.020

关键词

Catalytic pyrolysis; Phenols; Cascade utilization; Biochemical; Alkaline catalyst; Black liquor

资金

  1. National Natural Science Foundation of China [21161140329]
  2. National High-Tech Research and Development Program of China (863 program) [2012AA021402]

向作者/读者索取更多资源

This study is devoted to investigating the potential of producing phenols via pyrolysis of lignin in black liquor (BL) by a fixed bed reactor at 350-550 degrees C. The chemicals in the pyrolysis liquid of both black liquor solid (BLS) and purified lignin (PL) from BL are mainly phenols including 4-methoxyphenol, 3,4-dimethoxyphenol, 2-methoxy-4-alkylphenols and alkylphenols. For pyrolysis of BLS, high temperature facilitated the breakage of methoxyl group(s). The highest liquid yield was 27 wt.% at 450 degrees C, and the content of phenols free of -OCH3 reached 55 wt.% in addition to a small amount of other phenols. The pyrolysis of PL with and without addition of alkali additives of NaOH and Na2CO3 at 450 degrees C verified that the alkali could promote the formation of phenols. The strong alkali of NaOH greatly promoted the production of phenols free of -OCH3, whereas the effect of Na2CO3 in this aspect was much less. Catalyzed by its self-contained alkalis, the pyrolysis of BLS had high contents of alkylphenols and phenol in the tar (organics). This shows the prospective for production of phenols from pyrolyzing black liquor, while the heating value of the pyrolysis residue was above 6300 kJ/kg to further support the cascade utilization of BLS. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据