4.7 Article

Thermal performance of a micro combustor with heat recirculation

期刊

FUEL PROCESSING TECHNOLOGY
卷 109, 期 -, 页码 179-188

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fuproc.2012.11.002

关键词

Flame stability; Heat recirculation; Micro combustion; Spinning flames

向作者/读者索取更多资源

In this paper, numerical and experimental investigations in a three-step microcombustor have been carried out to understand the effect of heat recirculation on flame stabilization behavior with premixed fuel-air mixtures. External heating cup is utilized to enhance the heat recirculation. From numerical simulations, it was observed that the extent of heat recirculation is a function of cup dimensions, cup material, and flow velocity and mixture equivalence ratio. Heat recirculation has been observed to significantly enhance the flame stability limits and upper flame stability limits were observed for the range of flow rates investigated during the present work. Stable flames exist for smaller flow rates with a minimum thermal input of similar to 2.2 W at Phi=0.5. X-shaped spinning flames exist for inter-mediate flow rate conditions with and without heat recirculation for a broad range of equivalence ratios. These X-shaped flames rotate around the axis at similar to 100-150 Hz frequency. The average combustor wall temperature increases with the flow velocity for the stable flame mode and remain mostly uniform and well distributed for the X-shaped spinning flame mode. Heat recirculation helps in increasing the mean wall temperature of the combustor by similar to 100-400 K. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据