4.7 Article

Transesterification of canola oil catalyzed by nanopowder calcium oxide

期刊

FUEL PROCESSING TECHNOLOGY
卷 114, 期 -, 页码 154-162

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fuproc.2013.03.027

关键词

Transesterification; Biodiesel; Catalyst; Nanopowder calcium oxide; Kinetics

资金

  1. US Department of Transportation Research Innovative Technology Administration [DTOS59-06-G-0047]
  2. National Science Foundation EPSCoR grant
  3. Office Of The Director
  4. Office of Integrative Activities [903806] Funding Source: National Science Foundation

向作者/读者索取更多资源

Two types of commercial nanopowder calcium oxides, a higher surface area (HSA nano-CaO) and moderate surface area (nano-CaO) were studied for the transesterification of canola oil. The effect of reaction temperature, catalyst/oil weight ratio, and methanol/oil molar ratio on the reaction performance was investigated. The results show that nanopowder CaOs possess high activity due to their larger BET surface areas. At 65 degrees C, 99.85% biodiesel yield was obtained at 2 h when 3 wt.% of the nano-CaO catalyst was used with 9:1 methanol/oil molar ratio. The required catalyst/oil weight ratio to achieve the same yield under the same conditions was 10 times less for the HSA-nano-CaO catalyst. In contrast, only 88.59% and 16.23% yield were obtained for calcium methoxide (Ca(OCH3)(2)) and laboratory-grade CaO, respectively. A Langmuir-Hinshelwood model-based reaction mechanism was proposed for nano-CaO catalyzed transesterification reaction. The reaction was assumed to be first order with respect to triglyceride. The apparent reaction constants, apparent activation energy and pre-exponential factors have been calculated based on experimental data. Nanopowder CaOs were capable of being used without significant deactivation for 10 cycles. A slight drop in activity was ascribed to a combination of surface area loss from particle aggregation, the formation of Ca(OCH3)(2), CaCO3, a Ca-glycerin complex, and adsorbed CO2 on the catalyst surface. Particle size did not have any effect on the amount of Ca leaching but leaching did increase with longer reaction time especially at higher catalyst loadings. Increasing the methanol/oil molar ratio increased Ca leaching in the glycerol-rich phase and decreased Ca leaching in the biodiesel-rich phase. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据