4.7 Article

Activity and stability of a novel Ru modified Ni catalyst for hydrogen generation by supercritical water gasification of glucose

期刊

FUEL
卷 96, 期 1, 页码 541-545

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2012.01.066

关键词

Supercritical water gasification (SCWG); Hydrogen generation; Nickel catalysts; Ruthenium modifier; Stability

资金

  1. Ontario Ministry of Energy
  2. Ontario Centers of Excellence (OCE) through the Atikokan Bioenergy Research Center (ABRC)
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. Ontario Ministry of Research Innovation

向作者/读者索取更多资源

The activities and stabilities of gamma-Al2O3 supported Ni catalysts (Ni10/gamma-Al2O3 and Ru(0.1)Ni10/gamma-Al2O3) for hydrogen generation through the supercritical water gasification (SCWG) of glucose were investigated at 700 degrees C, 24 MPa and a weight hourly space velocity (WHSV) of 6 h (1) in a bench-scale continuous down-flow tubular reactor. The Ru0.1Ni10/gamma-Al2O3 catalyst (10 wt.% Ni, the Ru-to-Ni molar ratio of 0.1) exhibited higher activity and stability than Ni10/gamma-Al2O3 (10 wt.% Ni). With the Ru(0.1)Ni10/gamma-Al2O3 catalyst, negligible catalyst deactivation was observed over a period of 33 h on stream. The H-2 yield was maintained as high as similar to 50 mol/kg glucose throughout the entire stability test. In contrast, the activity of Ni10/gamma-Al2O3 catalyst (10 wt.% Ni) decreased after approximately 7 h on stream, accompanied by a marked decrease in the H-2 yield from similar to 50 mol/kg glucose initially to similar to 25 mol/kg glucose after 7 h. The temperature-programmed reduction (TPR) and H-2 chemisorption analyses on the fresh catalysts demonstrated that the addition of a small amount of Ru as a modifier could improve Ni dispersion, which could account for the enhanced activity and higher stability of the Ru(0.1)Ni10/gamma-Al2O3 catalyst. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据