4.7 Article

Investigation of the combustion of neat cottonseed oil or its neat bio-diesel in a HSDI diesel engine by experimental heat release and statistical analyses

期刊

FUEL
卷 89, 期 12, 页码 3814-3826

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2010.07.012

关键词

High speed DI diesel; Combustion Neat cottonseed oil; Neat bio-diesel; Heat release and statistical analyses

向作者/读者索取更多资源

An experimental study is conducted to evaluate the effects of using neat cottonseed oil or its neat ME (methyl ester) bio-diesel, on the combustion behavior of a standard, high speed, direct injection (HSDI), 'Hydra' diesel engine located at the authors' laboratory. Combustion chamber and fuel injection pressure diagrams are obtained at medium and high load using a developed, high-speed, data acquisition and processing system. A heat release analysis of the experimentally obtained cylinder pressure diagrams is developed and used. Plots of histories in the combustion chamber of the heat release rate and other related parameters reveal some interesting features, which shed light into the combustion mechanism when using these bio-fuels. These results, combined with the differing physical and chemical properties of the bio-fuels between themselves and against those for the diesel fuel, which constitutes the baseline fuel, aid the correct interpretation of the observed engine behavior performance-and emissions-wise. Moreover, the possible existence of cyclic (combustion) variability is examined as reflected in the pressure indicator diagrams, by analyzing for the maximum pressure and its rate, and the dynamic injection timing and ignition delay, by using statistical analysis for averages, standard deviations and probability density functions. The key results are that with the use of these bio-fuels against the neat diesel fuel case, the ignition delay is hardly affected, the fuel injection pressure diagrams are very slightly advanced accompanied with higher injection pressures, maximum cylinder pressures remain the same with the vegetable oil and slightly increased with the bio-diesel, maximum cylinder pressure rates are increased with the bio-diesel and decreased with the vegetable oil, while the cyclic irregularity is not affected with these bio-fuels remaining at the acceptable neat diesel fuel case levels. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据