4.5 Article

The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: insights from computational modeling

期刊

FRONTIERS IN HUMAN NEUROSCIENCE
卷 3, 期 -, 页码 -

出版社

FRONTIERS RES FOUND
DOI: 10.3389/neuro.09.033.2009

关键词

schizophrenia; computational model; gamma oscillation; cortical excitability

资金

  1. NIMH NIH HHS [R01 MH080187] Funding Source: Medline
  2. CSRD VA [I01 CX000154] Funding Source: Medline
  3. VA [5I01CX000154-06, 601657] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Schizophrenia is characterized by cortical circuit abnormalities, which might be reflected in gamma-frequency (30-100 Hz) oscillations in the electroencephalogram. Here we used a computational model of cortical circuitry to examine the effects that neural circuit abnormalities might have on gamma generation and network excitability. The model network consisted of 1000 leaky integrate- and-fire neurons with realistic connectivity patterns and proportions of neuron types [pyramidal cells (PCs), regular-spiking inhibitory interneurons, and fast-spiking interneurons (FSIs)]. The network produced a gamma oscillation when driven by noise input. We simulated reductions in: (1) recurrent excitatory inputs to PCs; (2) both excitatory and inhibitory inputs to PCs; (3) all possible connections between cells; (4) reduced inhibitory output from FSIs; and (5) reduced NMDA input to FSIs. Reducing all types of synaptic connectivity sharply reduced. power and phase synchrony. Network excitability was reduced when recurrent excitatory connections were deleted, but the network showed disinhibition effects when inhibitory connections were deleted. Reducing FSI output impaired gamma generation to a lesser degree than reducing synaptic connectivity, and increased network excitability. Reducing FSI NMDA input also increased network excitability, but increased gamma power. The results of this study suggest that a multimodal approach, combining non-invasive neurophysiological and structural measures, might be able to distinguish between different neural circuit abnormalities in schizophrenia patients. Computational modeling may help to bridge the gaps between post-mortem studies, animal models, and experimental data in humans, and facilitate the development of new therapies for schizophrenia and neuropsychiatric disorders in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据