4.7 Article

Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems

期刊

出版社

WILEY
DOI: 10.1890/090227

关键词

-

资金

  1. Division Of Environmental Biology
  2. Direct For Biological Sciences [1027253] Funding Source: National Science Foundation
  3. Division Of Environmental Biology
  4. Direct For Biological Sciences [0743402] Funding Source: National Science Foundation

向作者/读者索取更多资源

Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据