4.7 Article

Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 71, 期 -, 页码 270-280

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2014.03.027

关键词

Protein oxidation; Down syndrome; Alzheimer disease; Redox proteomics; Lipid peroxidation; HNE; Trisomy 21; Free radicals

资金

  1. NIH [A6-05119]
  2. Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute on Aging [NIH 1RO1HD064993-01]
  3. NICHD Brain and Tissue Bank for Developmental Disorders of the University of Maryland (Baltimore, MD, USA) [HH5N275200900011C (N01HD90011)]
  4. [P50AG16573]
  5. [P30AG28383]

向作者/读者索取更多资源

Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据