4.7 Review

Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 65, 期 -, 页码 1538-1547

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2013.07.016

关键词

Selenoprotein P; Glutathione peroxidase; Akt; Hydrogen peroxide; Diabetes; Insulin resistance; Free radicals

资金

  1. Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany [STE 1782/2-2]

向作者/读者索取更多资源

An assumed link between supranutritional intake of the micronutrient selenium (Se) and type 2 diabetes mellitus is discussed controversially. Se concentrations in the habitual diet and in dietary supplements are probably not sufficient to induce overt diabetes in healthy individuals. On the other hand, high plasma Se and selenoprotein P (Sepp1) levels have been found to be associated with biomarkers of an impaired carbohydrate and lipid homeostasis in humans. Moreover, abundant expression of antioxidant selenoproteins due to dietary Se oversupply resulted in hyperinsulinemia and decreased insulin sensitivity in animal models. This review discusses findings from animal and cell culture studies in search of molecular mechanisms underlying an interference of Se and selenproteins such as the Se transport and supply protein Sepp1 and the hydrogen peroxide-reducing selenoenzyme glutathione peroxidase 1 (GPx1) with insulin-controlled metabolic pathways. A probable rationale derives from the positive and negative regulation of both glucose-induced insulin secretion and insulin-induced signaling by hydrogen peroxide. Se status and GPx1 expression have been reported to affect the activity of insulin-antagonistic phosphatases that are regulated by hydrogen peroxide-mediated reversible oxidation of catalytic cysteine residues. GPx1 and/or Sepp1 inhibited phosphorylation (activation) of key mediators in energy metabolism such as protein kinase B (Akt) and AMP-activated protein kinase (AMPK) in liver and/or skeletal muscle. Conversely, a dys-regulated carbohydrate metabolism in diabetes might affect plasma Se and Sepp1 levels, as the hepatic biosynthesis of Sepp1 is suppressed by insulin and stimulated under hyperglycemic conditions. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据