4.7 Article

Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 45, 期 6, 页码 905-912

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2008.06.020

关键词

antioxidants; apoptosis; photoreceptors; reactive nitrogen species; retina; retinal dystrophies

资金

  1. NEI [EY05851]
  2. Foundation Fighting Blindness

向作者/读者索取更多资源

Retinitis pigmentosa (RP) is a group of diseases in which many different Mutations cause rod photoreceptor cells to die and then gradually cone photoreceptors die due to progressive oxidative damage. In this study, we have shown that peroxynitrite-induced nitrosative damage also occurs. In the rd1 mouse model of RP, there was increased staining for S-nitrosocysteine and nitrotyrosine protein adducts that are generated by peroxynitrite. Peroxynitrite is generated from nitric oxide (NO) and superoxide radicals. After degeneration of rods, injection of hydroethidine resulted in strong fluorescence in the retina of rd1 mice, indicating high levels of superoxide radicals, and this was reduced, as was nitrotyrosine staining, by apocynin, suggesting that overaction of NADP(H) oxidase is at least partially responsible. Treatment of rd1 mice with a mixture of nitric oxide synthase (NOS) inhibitors markedly reduced S-nitrosocysteine and nitrotyrosine staining and significantly increased cone survival, indicating that NO-derived peroxynitrite contributes to cone cell death. Treatment with 7-nitroindazole, a relatively specific inhibitor of neuronal NOS, also significantly reduced cone cell death, but aminoguanidine, a relatively specific inhibitor of inducible NOS, did not. These data suggest that NO generated by neuronal NOS exacerbates oxidative damage to cones in RP and that combined therapy to reduce NO and oxidative stress should be considered. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据