4.7 Article

Wild land fire emissions, carbon and climate: Characterizing wildland fuels

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 317, 期 -, 页码 26-40

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2013.02.037

关键词

Classification; Sampling; Remote sensing; Physical; Chemical; Scaling

类别

向作者/读者索取更多资源

Smoke from biomass fires makes up a substantial portion of global greenhouse gas, aerosol, and black carbon (GHG/A/BC) emissions. Understanding how fuel characteristics and conditions affect fire occurrence and extent, combustion dynamics, and fuel consumption is critical for making accurate, reliable estimates of emissions production at local, regional, national, and global scales. The type, amount, characteristics, and condition of wildland fuels affect combustion and emissions during wildland and prescribed fires. Description of fuel elements has focused on those needed for fire spread and fire danger prediction. Knowledge of physical and chemical properties for a limited number of plant species exists. Fuel beds with potential for high impact on smoldering emissions are not described well. An assortment of systems, methods, analytical techniques, and technologies have been used and are being developed to describe, classify, and map wildland fuels for a variety of applications. Older systems do not contain the necessary information to describe realistically the wildland fuel complex. While new tools provide needed detail, cost effectiveness to produce a reliable national fuels inventory has not been demonstrated. Climate change-related effects on vegetation growth and fuel distribution may affect the amount of GHG/A/BC emissions from wildland fires. A fundamental understanding of the relationships between fuel characteristics, fuel conditions, fire occurrence, combustion dynamics, and GHG/A/BC emissions is needed to aid strategy development to mitigate the expected effects of climate change. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据