4.7 Article

Wildland fire emissions, carbon, and climate: Wildfire-climate interactions

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 317, 期 -, 页码 80-96

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2013.02.020

关键词

Wildfire; Emission; Radiative forcing; Feedback to climate; Future fire projection

类别

资金

  1. FS Southern Research Station
  2. Northern Research Station
  3. USDA/USDI [JFSP 11172]
  4. USDA NIFA [2013-35100-20516]
  5. Directorate For Geosciences
  6. Div Atmospheric & Geospace Sciences [1243220] Funding Source: National Science Foundation
  7. Directorate For Geosciences
  8. Div Atmospheric & Geospace Sciences [1243232] Funding Source: National Science Foundation
  9. NIFA [2013-35100-20516, 577868] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Increasing wildfire activity in recent decades, partially related to extended droughts, along with concern over potential impacts of future climate change on fire activity has resulted in increased attention on fire-climate interactions. Findings from studies published in recent years have remarkably increased our understanding of fire-climate interactions and improved our capacity to delineate probable future climate change and impacts. Fires are projected to increase in many regions of the globe under a changing climate due to the greenhouse effect. Burned areas in the western US could increase by more than 50% by the middle of this century. Increased fire activity is not simply an outcome of the changing climate, but also a participant in the change. Smoke particles reduce overall solar radiation absorbed by the Earth's atmosphere during individual fire events and fire seasons, leading to regional climate effects including reduction in surface temperature, suppression of cloud and precipitation, and enhancement of climate anomalies such as droughts. Black carbon (BC) in smoke particles displays some different radiation and climate effects by warming the middle and lower atmosphere, leading to a more stable atmosphere. BC also plays a key role in the smoke-snow feedback mechanism. Fire emissions of CO2, on the other hand, are an important atmospheric CO2 source and contribute substantially to the global greenhouse effect. Future studies should generate a global picture of all aspects of radiative forcing by smoke particles. Better knowledge is needed in space and time variability of smoke particles, evolution of smoke optical properties, estimation of smoke plume height and vertical profiles and their impacts on locations of warming layers, stability structure, clouds and smoke transport, quantification of BC emission factors and optical properties from different forest fuels, and BC's individual and combined roles with organic carbon. Finally, understanding the short-and long-term greenhouse effect of fire CO2 emissions, increased capacity to project future fire trends (especially mega-fires), with consideration of climate-fuel-human interactions, and improved fire weather and climate prediction skills (including exploring the SST-fire relations) remain central knowledge needs. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据