4.7 Article

Effects of treefall gaps created by windthrow on bat assemblages in a temperate forest

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 261, 期 9, 页码 1546-1552

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2011.02.001

关键词

Acoustic monitoring; Ecomorphological traits; Gap size; Natural disturbance; Spatial distribution; Species richness

类别

资金

  1. JSPS [6525]

向作者/读者索取更多资源

Determining the way in which spatial distribution and diversity of forest-dwelling mammals varies with natural disturbance is essential to understanding the spatial dynamics of mammal assemblages in forests. Bats are the only forest-dwelling mammals capable of true flight. At a local scale, bat flight ability, which may be related to ecomorphological traits, is an important factor influencing spatial distribution. We tested two postulates: (1) the spatial distribution of bats is affected by sizes of forest gaps created by natural disturbances and (2) species-specific responses can be predicted from bat ecomorphological traits (aspect ratio (AR) and wingtip shape index (WT)) that influence bat flight ability. We found that sizes of forest gaps affected the occurrence of each bat species and species richness of bats at local scales: species-specific responses were related to the ecomorphological traits of individual species. Bat species with high AR and low WT were not affected by variation in canopy gap size. In contrast, bat species with low AR and high WT responded negatively to gap size, and those with intermediate AR and WT responded positively to canopy gap size at sites with small-sized gaps but responded negatively to large-sized gaps. Overall bat species richness responded negatively to gap size. Thus, ecomorphological traits may be important determinants of bat spatial distributions and species diversity at local scales in disturbed habitats. In this study, forest edges might have been undersampled due to the location of bat detectors. However, this potential undersampling should not have affected the interpretation of occurrence patterns of bat species responding to gap size. Our results imply that bat conservation efforts in forest lands should take into consideration specific responses related to ecomorphological traits of species inhabiting an area. The results also suggest that quantifying the effects of natural disturbances on bat assemblages may provide a knowledge base for forest management to minimize the impacts of unavoidable anthropogenic disturbances on bat species diversity. Rare or infrequent natural disturbances can provide models for forest management aimed at maintaining bat species diversity. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据