4.7 Article

Red oak responses to nitrogen addition depend on herbivory type, tree family, and site

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 259, 期 10, 页码 1930-1937

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2010.02.004

关键词

Nitrogen deposition; Carbon sink; Herbivory; Deer browse damage; Gene by environment interaction; Quercus rubra

类别

资金

  1. NSF [DEB-9974067]

向作者/读者索取更多资源

Elevated atmospheric N deposition is predicted to increase plant growth and C storage in N-limited systems, but this assumes that no mitigating ecological factors are influenced by N deposition. Many herbivores are also N-limited and so increased herbivore damage in response to N deposition may moderate, or even eliminate, gains in plant growth under elevated N. Thus the response of herbivores to N deposition could influence the onset and magnitude of N saturation resulting in expedited decreases in C storage. Since tree susceptibility to herbivores is partially under genetic control and will be influenced by site characteristics, we tested whether the interaction between N deposition, tree growth, and herbivore damage depends on tree genetic variation in susceptibility to herbivores at different locations. By monitoring 12 half-sib families of northern red oak (Quercus rubra) saplings at two common garden sites in south-central Pennsylvania, we found that herbivores were pervasive at both sites, resulting in 13% chewing damage, 16% galling damage and 28% browsing damage. N addition significantly affected browsing damage (8% overall increase) and chewing damage (19% overall increase) but did not affect galling damage. However, this effect was strongly dependent on the Q. rubra family and location, both of which influenced oak susceptibility to herbivore damage independent of N additions. Greater browsing damage on trees under N addition caused reductions in relative height growth, and this effect also depended on tree family and location. Our result suggests that herbivory, mediated by tree genetic lineage and site-specific conditions, may represent an important component of C sinks and N saturation under elevated N deposition. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据