4.7 Article

Nutritional status and genetic variation in the response to nutrient availability in Pinus pinaster. A multisite field study in Northwest Spain

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 258, 期 7, 页码 1429-1436

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2009.06.041

关键词

Genetic variation; Phenotypic plasticity; Genotype x environment interaction; Fertilization x genotype interaction; Nutrient deficiencies; Plasticity index

类别

资金

  1. INIA [RTA05-173, RTA07-100]

向作者/读者索取更多资源

The low nutrient availability of the acidic and sandy soils of Galicia (Northwest Spain) is probably the main environmental factor limiting forest primary productivity in the area. These particular edaphic conditions could have imposed selective pressures on maritime pine populations leading to specific local adaptations. We first assessed the nutritional status of 22 young contemporary Pinus pinaster plantations in Northwest Spain, and then analysed the response to fertilization in three family x fertilization trials, and how this response varied across sites and genotypes. Growth of P. pinaster in Northwest Spain appeared to be largely limited by nutrient availability, where most of the plantations showed severe nutrient deficiencies, especially in P and Mg. According to these deficiencies, a strong positive response to nutrient additions was observed in the three trials, with height increments of up to 30% compared with the unfertilized control. However, the response to fertilizers was very variable from site to site, and in some cases did not agree with the foliar nutritional diagnosis. The response to fertilization was also significantly affected by pine genotype, suggesting that the plastic response to nutrient additions within each environment was under genetic control. However, the family response to nutrient availability was not consistent across sites, and no significant differences among families were observed for the RDPI plasticity index - a single index that summarizes the phenotypic change in multiple environments - when analysed across environments. The strong environmental component modulating phenotypic responses to fertilization could impose an important obstacle to evolve specific adaptations to the local edaphic conditions, as well as to artificially select genotypes adapted to different environments and silviculture regimes. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据