4.7 Article

Soil desiccation for Loess soils on natural and regrown areas

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 255, 期 7, 页码 2467-2477

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2008.01.006

关键词

soil desiccation; dried soil layer (DSL); natural forest; regrown forest; slope aspect; slope gradient; soil physical property

类别

向作者/读者索取更多资源

In the Loess Plateau, soil desiccation has become a serious problem for forest and grass vegetation. Soil desiccation leads to the formation of a dried soil layer (DSL). This paper presents the results of research carried out in the central part of the Loess Plateau. The objective of the research was to produce a statistically supported set of indicators for evaluating soil desiccation of forestlands, to present a heuristic idea for soil desiccation and to supply scientific support for replacing farmland with forest or grass in the Loess Plateau and other regions of China. Here, we suggest that more attention should be paid to soil desiccation and its effects on the ecosystem of the region in the future. The results showed that natural Quercus liaotungensis forestlands (NQF) retained more water content than regrown Robinnia pseudoscacia forestlands (RRF). Significant DSLs were formed in the RRF but not in the NQF. A possible reason for no formation of DSL in NQF could be due to the presence of an arbor-shrub-herb stand structure and large humus and litter accumulation, which increased the natural forest's (NF) adaptability to the environmental conditions. Soil water content in the north-facing slope was significantly larger than in the south-facing slope. DSLs formed in the 0-500 cm layer of the south-facing slope. When slope gradient was greater than 25 degrees, soil water content deceased sharply and showed significant difference compared with 9 degrees, 15 degrees and 20 degrees (P < 0.05). So, we conclude that plant species, aspect and slope angle could be the predicators for the formation of DSLs. The analysis on soil physical properties of 0-60 cm layer indicated that plant species, aspect and slope angle also have significant effects on bulk density, porosity, plant-available capacity, and hydraulic conductivity, especially in the 0-20 and 20-40 cm layers. In the NQF and RRF with north-facing slope, soil physical properties were improved. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据