4.7 Article

Competitive interactions inside mixed-culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation

期刊

FOOD RESEARCH INTERNATIONAL
卷 55, 期 -, 页码 445-454

出版社

ELSEVIER
DOI: 10.1016/j.foodres.2013.11.042

关键词

Salmonella Typhimurium; Indigenous microorganisms; UV; Internalization; Mixed-culture biofilms; Lettuce; Weibull model

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF)
  2. Ministry of Science, ICT & Future Planning [2013005051]

向作者/读者索取更多资源

Salmonella Typhimurium (ST) is one of the leading causes of foodborne diseases in fresh produce, such as lettuce. Despite this, the role of the possible interactions between lettuce indigenous microorganisms and ST on their ability to form biofilm on lettuce and subsequently on the sensitivity of their sessile cells to ultraviolet C (UV-C) irradiation, remains relatively unexplored. Here, the interaction of a mixed-culture of ST and cultivable indigenous microorganisms (CIMs) was examined, as well as the efficacy of UV-C. Initially, the CIMs were isolated and cultured with ST at 15 degrees C either planktonically or left to form biofilms on stainless steel (SS) and lettuce leaves. Microbial growth, biofilm formation, and survival following UV-C treatment were monitored using traditional plate count methods while biofilm formation, production of extracellular polymeric substance (EPS), and stomatal colonization were also observed by field emission scanning electron microscopy (FESEM). Internalization strength, color, and texture were analyzed by standard methods. Results revealed that the mixed-culture of ST and CIMs presented significantly (p < 0.05) decreased biofilm formation on lettuce leaves compared to mono-cultures (i.e. ST or CIMs alone), which indicated competitive interaction between them, while no interactions were observed for biofilms on SS and for the planktonic cultures. It was also demonstrated that a mixed-culture biofilm on lettuce presented significantly higher resistance (p < 0.05) to UV-C treatment compared to mono-culture biofilms, but such an effect was not observed for biofilms formed on SS and for the planktonic cultures. The Weibull model fitted well to microbial inactivation curves with R-2 values that ranged from 0.90 to 0.97. Regarding the mixed-culture conditions, a UV-C fluency of 35 mJ/cm(2) was required to achieve a 5.0 log CFU/mL or cm(2) reduction in planktonic and biofilms on the SS for the mixed-culture, while 360 mJ/cm(2) was required to reduce biofilm cell number by approximately 2.0 log CFU/cm(2) on lettuce. Furthermore, FESEM analysis indicated higher EPS production, and greater stomatal colonization on lettuce mixed-cultures compared to mono-cultures. Finally, internalization strength was significantly higher (p < 0.05) for the mixed-culture on lettuce, thus supporting the notion that internalization in lettuce is a factor that contributes to microbial UV-C resistance. The absence of adverse effects of UV-C on the color and texture of the lettuce suggests it as an alternative means of eliminating ST. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据