4.7 Article

Interactions between formulation and spray drying conditions related to survival of Lactobacillus plantarum WCFS1

期刊

FOOD RESEARCH INTERNATIONAL
卷 56, 期 -, 页码 9-17

出版社

ELSEVIER
DOI: 10.1016/j.foodres.2013.12.007

关键词

Feed formulation; Spray drying; Viability; Probiotics; Vitrification

资金

  1. Advanced Chemical Technologies for Sustainability (ACTS)-Netherlands Organization for Scientific Research (NWO) through the Process on a Chip (PoaC) program

向作者/读者索取更多资源

Protective solid carriers are commonly added to probiotic cultures prior to drying. Their formulation is not trivial and depends on the drying conditions applied. In this study, we systematically investigated the influence of formulation parameters on the survival of Lactobacillus plantarum WCFS1 after drying. Low molecular weight carbohydrates (less than 2 kDa) with high glass transition temperatures provided the highest level of protection at both low (25 degrees C) and high (50 degrees C or higher) drying temperatures. Low molecular weight carbohydrates may provide stabilization by closely interacting with the lipid bilayer of the cell membranes. Meanwhile, carbohydrates with high glass transition temperatures probably provide stabilization via fixation of the cells in a glassy powder. Furthermore, adequate amounts of solid carrier are required to sufficiently stabilize the cells during drying. During drying, crystallization of solid carriers may occur. Depending on the crystal geometry, crystallization can be either beneficial (e.g. with mannitol or sorbitol) or detrimental (e.g. with lactose) to cell survival. Finally, the effect of formulation on cell viability during storage was studied. A decimal reduction time of approximately 300 days was observed when spray dried L. plantarum WCFS1 was stored at temperatures below 40 degrees C. The outcome of this study was used as a basis to construct a generalized diagram to indicate the combinations of formulation and drying conditions to maximally retain viability and operate dryers at high efficiency. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据