4.7 Article

Salmonella biofilms: An overview on occurrence, structure, regulation and eradication

期刊

FOOD RESEARCH INTERNATIONAL
卷 45, 期 2, 页码 502-531

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.foodres.2011.01.038

关键词

Salmonella; Biofilm

资金

  1. Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)
  2. Katholieke Universiteit Leuven [KP/06/014]
  3. Centre of Excellence SymBioSys (Research Council K.U.Leuven) [EF/05/007]

向作者/读者索取更多资源

The ability of Salmonella to form complex surface-associated communities, called biofilms, contributes to its resistance and persistence in both host and non-host environments and is especially important in food processing environments. In this review, the different types of abiotic (plastic, glass, cement, rubber, and stainless steel) and biotic surfaces (plant surfaces, epithelial cells, and gallstones) on which Salmonella biofilms have been described are discussed, as well as a number of commonly used laboratory setups to study Salmonella biofilm formation (rdar morphotype, pellicle formation, and biofilms on polystyrene pegs). Furthermore, the structural components important during Salmonella biofilm formation are described (curb and other fimbriae, BapA, flagella, cellulose, colanic acid, anionic O-antigen capsule and fatty acids), with special attention to the structural variations of biofilms grown on different surfaces and under different conditions. Indeed, biofilm formation is strongly influenced by different environmental signals, via a complex regulatory network. An extensive overview is given on the current understanding of this genetic network and the interactions between its different components (CsgD, RpoS, Crl, OmpR, IHF, H-NS, CpxR, MIrA, c-di-GMP, BarA/SirA, Csr, PhoPQ RstA, Rcs, metabolic processes and quorum sensing). To further illustrate that biofilm formation is a mechanism of Salmonella to adapt to different environments, the resistance of Salmonella biofilms against different stress factors including desiccation stress, disinfectants (e.g. hypochlorite, glutaraldehyde, cationic tensides and triclosan) and antibiotics (e.g. ciprofloxacin) is described. Finally, a number of Salmonella biofilm inhibitors, identified through bottom-up- and top-down-approaches, are discussed, such as surfactin, glucose, halogenated furanones, 4(5)-aryl 2-aminoimidazoles, furocoumarins and salicylates. Also the potential of combination therapy (e.g. combinations of triclosan and quaternary ammonium salts or halogenated furanones and antibiotics/disinfectants) and nano- and micro-emulsions to inhibit Salmonella biofilm formation is discussed. Insight into the pathogen's complex biofilm process will eventually lead to further unraveling of its intricacies and more efficient strategies to combat Salmonella biofilms. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据