4.7 Article

Viscosimetric and tensiometric investigations of interactions between gelatin and surface active molecules of various structures

期刊

FOOD HYDROCOLLOIDS
卷 32, 期 1, 页码 20-27

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2012.12.003

关键词

Gelatin; Small molecule surfactants; Polymeric surfactants; Interaction

资金

  1. Ministry of Education and Science of the Republic of Serbia [III46010]

向作者/读者索取更多资源

Gelatin is a protein widely used in food, pharmaceutical and cosmetic products. Polypeptide structure of gelatin molecule facilitates its interactions with different surface active ingredients that are often present in such products. These interactions can significantly change properties of gelatin solution in the bulk, as well as on the interface, and therefore influence the stability of the system. In this study interactions between gelatin and different surface active molecules: two small molecule surfactants (Tween 80, Triton X100) and two surface active polymers: starch derivative (octenyl succinic starch, OSA) and cellulose derivative (hydroxypropylmethyl cellulose, HPMC), were investigated using tensiometric and viscosimetric measurements. The results show that possibility and mechanisms of interaction between gelatin and surface active molecules depend not only on the nature of molecules, but also on its chemical structure. Thus, non-ionic, branched small molecule surfactant Tween 80 shows hydrophobic mechanism of interaction with gelatin, while other used linear small molecule surfactant, Triton X100, does not interact. Polymeric surfactant OSA starch is a weak anionic polyelectrolyte, but due to hidden polar group, shows hydrophobic interaction with gelatin, dependant on pH of the solution. HPMC molecule, which is non-ionic with small hydrophobic substituents, does not interact at all. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据