4.7 Article

Reactive oxygen species responsible for beta-glucan degradation

期刊

FOOD CHEMISTRY
卷 141, 期 1, 页码 589-596

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2013.02.096

关键词

Beta-glucan; Oxidation; Catalase; Superoxide dismutase; Fenton reaction; Reactive oxygen species

向作者/读者索取更多资源

The presence of iron(II) in beta-glucan in solution causes the formation of hydroxyl radical, which further oxidises the polysaccharide. This degradation can be enhanced by the presence of a reducing agent, such as ascorbic acid. In this study we investigated the effect the iron(II) concentration on the hydroxyl radical-mediated degradation of beta-glucan and identified the intermediate species involved in the formation of hydroxyl radicals. An increase in the iron(II) concentration did not have a significant effect on the degradation in the presence of a reducing agent (ascorbic acid), while in the mere presence of iron(II) it accelerates the degradation. The addition of catalase and superoxide dismutase (SOD) prevented the hydroxyl radical driven-degradation of beta-glucan induced by iron(II) or ascorbic acid/iron(11), demonstrating the involvement of both superoxide and hydrogen peroxide in the hydroxyl radical formation. SOD, which catalyses the dismutation of superoxide into hydrogen peroxide, should have stimulated the formation of radicals, since these radicals are generated from the reaction between hydrogen peroxide and iron(II). In the present study, we hypothesise the mechanism of the inhibition of beta-glucan degradation by superoxide dismutase. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据