4.7 Article

A biocatalytic route towards rose oxide using chloroperoxidase

期刊

FOOD CHEMISTRY
卷 129, 期 3, 页码 1025-1029

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2011.05.068

关键词

Halohydrin; Bioconversion; Haloperoxidase; Monoterpene; Enzymatic halogenation

向作者/读者索取更多资源

The chiral monoterpene alcohol citronellol was converted to the corresponding bromohydrin by the haem-thiolate enzyme chloroperoxidase (CPO) from Caldariomyces fumago in the presence of hydrogen peroxide and bromide ions. A conversion rate of 51% could be achieved under adapted reaction conditions, which easily yield product in the gramme per litre range while only needing catalytic amounts of enzyme. The bromohydroxylation was shown to be highly regioselective yielding 6-bromo-3,7-dimethyloctane-1,7-diol as the sole product. Product identity was confirmed by GC-MS, (1)H- and (13)C-NMR spectroscopy and the synthesis of reference compounds. However, the reaction was shown to be non-stereospecific because enantiopure (R)- and (S)-citronellol, respectively, gave 1:1-diasteromeric mixtures of the corresponding bromohydrins. A racemic mixture of (R/S)-citronellol was bromohydroxylated without any detectable enantiodiscrimination. The total lack of stereospecificity and enantiodiscrimination points to a reaction mechanism where the oxidised bromide intermediate is not a ligand to the Fe(III)-haem at the distal site but is released from the enzyme active site. The final bromide transfer occurs probably outside the active site via a diffusible oxidised bromide species and the demonstrated regioselectivity is purely chemically controlled. The generated bromohydrins can be straightforward converted via two reactions steps into rose oxide which is a highly valuable flavour and fragrance substance. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据