4.3 Article Proceedings Paper

Analysis of Flow Phenomena in Gastric Contents Induced by Human Gastric Peristalsis Using CFD

期刊

FOOD BIOPHYSICS
卷 5, 期 4, 页码 330-336

出版社

SPRINGER
DOI: 10.1007/s11483-010-9183-y

关键词

Peristalsis; Flow-field; Shear force; Mass transfer; CFD

向作者/读者索取更多资源

This paper uses computational fluid dynamics to simulate and analyze intragastric fluid motions induced by human peristalsis. We created a two-dimensional computational domain of the distal stomach where peristalsis occurs. The motion of the gastric walls induced by an antral contraction wave (ACW) on the wall of the computational domain was well simulated using a function defined in this study. Retropulsive flow caused by ACW was observed near the occluded region, reaching its highest velocity of approximately 12 minis in the narrowest region. The viscosity of the model gastric contents applied in this study hardly affected the highest velocity, but greatly affected the velocity profile in the computational domain. The shear rate due to gastric fluid motion was calculated using the numerical output data. The shear rate reached relatively high values of approximately 20 s(-1) in the most occluded region. The shear rate profile was almost independent of the fluid viscosity. We also simulated mass transfer of a gastric digestive enzyme (pepsin) in model gastric content when peristalsis occurs on the gastric walls. The visualized simulation results suggest that gastric peristalsis is capable of efficiently mixing pepsin secreted from the gastric walls with an intragastric fluid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据