4.7 Article

Structural influence of isothiocyanates on expression of cytochrome P450, phase II enzymes, and activation of Nrf2 in primary rat hepatocytes

期刊

FOOD AND CHEMICAL TOXICOLOGY
卷 50, 期 8, 页码 2822-2830

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fct.2012.05.044

关键词

Cytochrome 450; Isothiocyanate; Nrf2; Oxidative stress; Phase II

向作者/读者索取更多资源

Primary cultures of rat hepatocytes were used to investigate whether and how eight isothiocynates (ITCs) with different chemical structures (the aromatic benzyl, 4-hydroxybenzyl, phenethyl isothiocyanates and the aliphatic ally!, napin, iberin, raphasatin isothiocyanates and sulforaphane) derived from hydrolyzed glucosinolates, were able to modulate cytochrome P450 (CYP) and antioxidant/detoxifying enzymes and to activate the Nrf2 transcription factor. The aromatic ITCs at 40 mu M markedly increased the transcription of CYP1A1 and 1A2 mRNA and increased the associated ethoxyresorufin O-deethylase (EROD) activity after 24 h of treatment. By contrast, the aliphatic ITCs (40 mu M) decreased CYP1A1 and 1A2 transcription, together with the corresponding EROD activity. The same treatment also caused a striking and similar transcriptional repression of CYP3A2, and the corresponding benzyloxyquinoline debenzylase activity in response to all the ITCs tested. In the same culture conditions, most of the antioxidant/detoxifying enzymes were significantly up-regulated by 40 mu M ITCs. In particular, NAD(P)H:quinone oxidoreductase and heme oxygenase-1 were induced, although to different levels, at transcriptional, protein and/or activity levels by all the ITCs. However, glutathione S-transferase activity was not induced by the allyl, benzyl, and 4-hydroxybenzyl ITCs, glutathione reductase activity was not induced by benzyl, and 4-hydroxybenzyl ITCs and catalase activity was not induced by allyl ITC. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus was revealed by immunoblotting after 1 h of treatment for all the ITCs tested. The ability of ITCs to induce the antioxidant and phase II enzymes did not appear to be affected by their hydrophilicity or other structural factors. Taken together. these results show that these ITCs are effective inducers of ARE/Nrf2-regulated antioxidant/detoxifying genes and have the potential to inhibit, at least in rat liver, the bioactivation of carcinogens dependent on CYP3A2 catalysis. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据