4.4 Article

Depolarizing differential Mueller matrix of homogeneous media under Gaussian fluctuation hypothesis

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAA.32.001736

关键词

-

类别

向作者/读者索取更多资源

In this paper, we address the issue of the existence of a solution of depolarizing differential Mueller matrix for a homogeneous medium. Such a medium is characterized by linear changes of its differential optical properties with z the thickness of the medium. We show that, under a short correlation distance assumption, it is possible to derive such linear solution, and we clarify this solution in the particular case where the random fluctuation processes associated to the optical properties are Gaussian white noise-like. A solution to the problem of noncommutativity of a previously proposed model [J. Opt. Soc. Am. 30, 2196 (2013)] is given by assuming a random permutation of the order of the layers and by averaging all the differential matrices resulting from these permutations. It is shown that the underlying assumption in this case is exactly the Gaussian white noise assumption. Finally, a recently proposed approach [Opt. Lett. 39, 4470 (2014)] for analysis of the statistical properties related to changes in optical properties is revisited, and the experimental conditions of application of these results are specified. (C) 2015 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据