4.5 Article

Investigating vapor-liquid equilibria of binary mixtures containing supercritical or near-critical carbon dioxide and a cyclic compound using cascade neural network

期刊

FLUID PHASE EQUILIBRIA
卷 343, 期 -, 页码 24-29

出版社

ELSEVIER
DOI: 10.1016/j.fluid.2013.01.012

关键词

Cascade neural network; Phase equilibria; Supercritical extraction; Bubble point pressure; Dew point pressure

向作者/读者索取更多资源

Vapor-liquid equilibria (VLE) play an important role in designing and modeling of separation processes, in which containing vapor and liquid in equilibrium. Since it is not always possible to carry out experiments at all temperatures and pressures of interest, especially near the critical region, generally thermodynamic models based on equations of state (EoS) are used for the estimation of VLE. In the present work, an alternate tool, i.e. the cascade-forward back-propagation artificial neural network (ANN) model, has been applied for estimation of bubble- and dew-point pressures of binary mixtures containing carbon dioxide (CO2) + cyclic compounds as function of reduced temperature of the system, critical pressure, acentric factor of the cyclic compound, and CO2 composition. Six binary systems within temperature and pressure ranges of 298.15-473.15 K and 0.89-27.71 MPa were used to examine the feasibility of the proposed ANN model for the binary systems of CO2 + cyclic compounds. The obtained results show that the proposed neural network method is able to predict the phase envelope of binary systems containing supercritical or near-critical CO2 + cyclic compounds with an acceptable average absolute relative deviation percent (AARD%) of 1.51% and the coefficient of determination (R-2) value of 0.9989 within their experimental uncertainties. (c) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据