4.4 Article

Friction Drag Variation via Spanwise Transversal Surface Waves

期刊

FLOW TURBULENCE AND COMBUSTION
卷 87, 期 1, 页码 33-53

出版社

SPRINGER
DOI: 10.1007/s10494-011-9326-3

关键词

Turbulent boundary layer; Large-eddy simulation; Active control; Spanwise traveling wave

向作者/读者索取更多资源

The introduction of spanwise velocity is a promising technique to effect the near-wall turbulent flow field to influence friction drag. However, the essential physical mechanism which significantly reduces friction drag has not been understood, yet. It is the objective of this numerical study to improve the fundamental knowledge on the drag reduction mechanism. The investigation is based on spanwise traveling transversal surface waves which are applied to modify the near-wall flow field and to influence friction drag. Two actuation configurations are analyzed in detail. Compared with an unactuated flat plate boundary layer simulation the first wave setup, which represents a low frequency wave at an amplitude larger than the viscous sublayer, leads to a reduced wall-shear stress resulting in friction drag reduction of up to 9%. The second wave setup, which possesses a higher frequency and an amplitude in the range of the viscous sublayer, yields an increase of friction drag of about 8%. Unlike previous investigations which focus on excitation setups to lower friction drag, the comparison of the two wave setups in this study allows to identify the effects which on the one hand, lead to drag reduction and on the other hand, result in drag increase. That is, due to the pronounced differences the major effects determining the friction distribution are more evident. The two key features for drag reduction are the damping of the wall-normal vorticity fluctuations above the entire surface and the decrease of turbulence production. Furthermore, the effect of rearranging streamwise vorticity, which has been stated to be responsible for drag reduction, is found to occur at increasing and decreasing drag, i.e., it is not the effect that lowers the friction drag.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据